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Declarative Name Binding and Scope Rules

Gabriël Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser

Delft University of Technology, The Netherlands,
{l.c.l.kats, g.h.wachsmuth, e.visser}@tudelft.nl

Abstract. In textual software languages, names are used to reference
elements like variables, methods, classes, etc. Name resolution analyses
these names in order to establish references between de�nition and use
sites of elements. In this paper, we identify recurring patterns for name
bindings in programming languages and introduce a declarative meta-
language for the speci�cation of name bindings in terms of namespaces,
de�nition sites, use sites, and scopes. Based on such declarative name
binding speci�cations, we provide a language-parametric algorithm for
static name resolution during compile-time. We discuss the integration
of the algorithm into the Spoofax Language Workbench and show how
its results can be employed in semantic editor services like reference res-
olution, constraint checking, and content completion.

1 Introduction

Software language engineering is concerned with linguistic abstraction, the for-
malization of our understanding of domains of computation in higher-level soft-
ware languages. Such languages allow direct expression in terms of the domain,
instead of requiring encoding in a less speci�c language. They raise the level of
abstraction and reduce accidental complexity. One of the key goals in the �eld
of language engineering is to apply these techniques to the discipline itself: high-
level languages to specify all aspects of software languages. Declarative languages
are of particular interest since they enable language engineers to focus on the
What? instead of the How?. Syntax de�nitions are a prominent example. With
declarative formalisms such as EBNF, we can specify the syntactic concepts of a
language without specifying how they can be recognized programmatically. This
declarativity is crucial for language engineering. Losing it hampers evolution,
maintainability, and compositionality of syntax de�nitions [15].

Despite the success of declarative syntax formalisms, we tend to program-
matic speci�cations for other language aspects. Instead of specifying languages,
we build programmatic language processors, following implementation patterns
in rather general speci�cation languages. These languages might still be con-
sidered domain-speci�c, when they provide special means for programmatic lan-
guage processors. They also might be considered declarative, when they abstract
over computation order. However, they enable us only to implement language
processors faster, but not to specify language aspects. They lack domain con-
cepts for these aspects and focus on the How?. That is a problem since (1) it
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entails overhead in encoding concepts in a programming language and (2) the
encoding obscures the intention; understanding the de�nition requires decoding.

Our goal is to extend the set of really declarative, domain-speci�c languages
for language speci�cations. In this paper, we are speci�cally concerned with name
binding and scope rules. Name binding is concerned with the relation between
de�nitions and references of identi�ers in textual software languages, including
scope rules that govern these relations. In language processors, it is crucial to
make information about de�nitions available at the references. Therefore, tra-
ditional language processing approaches provide programmatic abstractions for
name binding. These abstractions are centered around tree traversal and in-
formation propagation from de�nitions to references. Typically, they are not
speci�cally addressing name binding, but can also be used for other language
processing tasks such as compilation and interpretation.

Name binding plays a role in multiple language engineering processes, includ-
ing editor services such as reference resolution, code completion, refactorings,
type checking, and compilation. The di�erent processes need di�erent informa-
tion about de�nitions. For example, name resolution tries to �nd one de�nition,
while code completion needs to determine all possible references in a certain
place. The di�erent requirements lead either to multiple re-implementations of
name binding rules for each of these purposes, or to non-trivial, manual weaving
into a single implementation supporting all purposes. This results in code dupli-
cation with as result errors, inconsistencies, and increased maintenance e�ort.

The traditional paradigm in�uences not only language processing, but also
language speci�cation. For example, the OCL language standard [19] speci�es
name binding in terms of nested environments, which are maintained in a tree
traversal. The C# language speci�cation [1] de�nes name resolution as a se-
quence of imperative lookup operations. In this paper, we abstract from the pro-
grammatic mechanics of name resolution. Instead, we aim to declare the roles of
language constructs in name binding and leave the resolution mechanics to a gen-
erator and run-time engine. We introduce the Name Binding Language (NBL),
a language with linguistic abstractions for declarative de�nition of name bind-
ing and scope rules. NBL supports the declaration of de�nition and use sites
of names, properties of these names associated with language constructs, name-
spaces for separating categories of names, scopes in which de�nitions are visible,
and imports between scopes.

NBL is integrated in the Spoofax Language Workbench [14], but can be
reused in other language processing environments. From de�nitions in the name
binding language, a compiler generates a language-speci�c name resolution strat-
egy in the Stratego rewriting language [25] by parametrizing an underlying
generic, language independent strategy. Name resolution results in a persistent
symbol table for use by semantic editor services such as reference resolution, con-
sistency checking of de�nitions, type checking, refactoring, and code generation.
The implementation supports multiple �le analysis by default.

We proceed as follows. In Sect. 2 and 3 we introduce NBL by example, using
a subset of the C# language. In Sect. 4 we discuss the derivation of editor services
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from a name binding speci�cation. In Sect. 5 we give a high-level description of
the generic name resolution algorithm underlying NBL. In Sect. 6 we discuss the
integration of NBL into the Spoofax Language Workbench. Sect. 7 and 8 are for
evaluation and related work.

2 Declarative Name Binding and Scope Rules

In this section we introduce the Spoofax Naming Binding Language illustrated
with examples drawn from the speci�cation of name binding for a subset of
C# [1]. Fig. 1 de�nes the syntax of the subset in SDF [24]. The subset is by no
means complete; it has been selected to model representative features of name
binding rules in programming and domain-speci�c languages. In the following

Using* NsMem* → CompilationUnit {"Unit"}

"using" NsOrTypeName ";" → Using {" Using"}
"using" ID "=" NsOrTypeName → Using {" Alias"}
ID → NsOrTypeName {" NsOrType "}
NsOrTypeName "." ID → NsOrTypeName {" NsOrType "}

"namespace" ID "{" Using* NsMem* "}" → NsMem {" Namespace "}
Partial "class" ID Base "{" ClassMem* "}" → NsMem {" Class"}

→ Partial {" NonPartial "}
"partial" → Partial {" Partial "}

→ Base {" NoBase "}
":" ID → Base {"Base"}

Type ID ";" → ClassMem {"Field"}
RetType ID "(" {Param ","}* ")" Block ";" → ClassMem {" Method "}

ID → Type {" ClassType "}
"int" → Type {" IntType "}
"bool" → Type {" BoolType "}
Type → RetType
"void" → RetType {"Void"}
Type ID → Param {" Param"}

"{" Stmt* "}" → Block {" Block"}
Decl → Stmt
EmbStmt → Stmt
"return" Exp ";" → Stmt {" Return "}
Type ID ";" → Decl {"Var"}
Type ID "=" Exp ";" → Decl {"Var"}
Block → EmbStmt
StmtExp ";" → EmbStmt
"foreach" "(" Type ID "in" Exp ")" EmbStmt → EmbStmt {" Foreach "}

INT → Exp {" IntLit "}
"true" → Exp {"True"}
"false" → Exp {" False"}
ID → Exp {" VarRef "}
StmtExp → Exp
Exp "." ID → StmtExp {" FieldAccess "}
Exp "." ID "(" {Exp ","}* ")" → StmtExp {"Call"}
ID "(" {Exp ","}* ")" → StmtExp {"Call"}

Fig. 1. Syntax de�nition in SDF for a subset of C#. The names in the annotations are
abstract syntax tree constructors.
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subsections we discuss the following fundamental concepts of name binding: def-
inition and use sites, namespaces, scopes, and imports. For each concept we give
a general de�nition, illustrate it with an example in C#, and then we show how
the concept can be modeled in NBL.

2.1 De�nitions and References

The essence of name binding is establishing relations between a de�nition that
binds a name and a reference that uses that name. Name binding is typically
de�ned programmatically through a name resolution algorithm that connects
references to de�nitions. A de�nition site is the location of a de�nition in a
program. In many cases, de�nition sites are required to be unique, that is, there
should be exactly one de�nition site for each name. However, there are cases
where de�nition sites are allowed to be non-unique.

class C1 {}
class C2:C1 {}
partial class C3:C2 {}
partial class C3 {}

Fig. 2. Class declarations in C#.

Example. Figure 2 contains class de�nitions
in C#. Each class de�nition binds the name of a
class. Thus, we have de�nition sites for C1, C2,
and C3. Base class speci�cations are references
to these de�nition sites. In the example, we have
references to C1 as the base class of C2 and C2 as the base class of C3. (Thus, C2
is a sub-class of, or inherits from C1.) There is no reference to C3. The de�nition
sites for C1 and C2 are unique. By contrast, there are two de�nition sites for C3,
de�ning parts of the same class C3. Thus, these de�nition sites are non-unique.
This is correct in C#, since regular class de�nitions are required to be unique,
while partial class de�nitions are allowed to be non-unique.

Abstract Syntax Terms. In Spoofax abstract syntax trees (ASTs) are rep-
resented using �rst-order terms. Terms consist of strings ("x"), lists of terms
(["x","y"]), and constructor applications (ClassType("C1")) for labelled tree
nodes with a �xed number of children. Annotations in grammar productions
(Fig. 1) de�ne the constructors to be used in AST construction. For example,
Class(Partial(), "C3", Base("C2"), []) is the representation of the �rst
partial class in Figure 2. A term pattern is a term that may contain variables (x)
and wildcards (_).

Model. A speci�cation in the name binding language consists of a collection
of rules of the form pattern : clause∗, where pattern is a term pattern and
clause∗ is a list of name binding declarations about the language construct
that matches with pattern. Figure 3 shows a declaration of the de�nitions and
references for class names in C#. The �rst two rules declare class de�nition
sites for class names. Their patterns distinguish regular (non-partial) and par-
tial class declarations. While non-partial class declarations are unique de�nition
sites, partial class declarations are non-unique de�nition sites. The third rule
declares that the term pattern Base(c) is a reference to a class with name c.
Thus, the ": C1" in Figure 2 is a reference to class C1. Similarly, the second
rule declares a class type as a reference to a class.

Declarative Name Binding and Scope Rules SERG
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rules
Class(NonPartial(), c, _, _): defines unique class c
Class(Partial(), c, _, _) : defines non−unique class c
Base(c) : refers to class c
ClassType(c) : refers to class c

Fig. 3. Declaration of de�nitions and references for class names in C#.

2.2 Namespaces

De�nitions and references declare relations between named program elements
and their uses. Languages typically distinguish several namespaces, i.e. di�erent
kinds of names, such that an occurrence of a name in one namespace is not
related to an occurrence of that same name in another.

class x {
int x;
void x() {

int x; x = x + 1;
}

}

Fig. 4. Homonym class,
�eld, method, and variable
declarations in C#.

Example. Figure 4 shows several de�nitions for
the same name x, but of di�erent kinds, namely a
class, a �eld, a method, and a variable. Each of these
kinds has its own namespace in C#, and each of
these namespaces has its own name x. This enables
us to distinguish the de�nition sites of class x, �eld
x, method x, and variable x, which are all unique.

Model. We declared de�nitions and references
for the namespace class already in the previous example. Figure 5 extends that
declaration covering also the namespaces field, method, and variable. Note
that it is required to declare namespaces to ensure the consistency of name bind-
ing rules. De�nition sites are bound to a single namespace (defines class c),
but use sites are not. For example, a variable in an expression might either refer
to a variable, or to a �eld, which is modeled in the last rule. In our example,
this means that variable declarations hide �eld declarations, because variables
are resolved to variables, if possible. Thus, both x in the assignment in Figure 4
refer to the variable x.

2.3 Scopes

Scopes restrict the visibility of de�nition sites. A named scope is the de�nition
site for a name which scopes other de�nition sites. By contrast, an anonymous

scope does not de�ne a name. Scopes can be nested and name resolution typically
looks for de�nition sites from inner to outer scopes.

namespaces class field method variable
rules

Field(_, f) : defines unique field f
Method(_, m, _, _): defines unique method m
Call(m, _) : refers to method m

Var(_, v): defines unique variable v
VarRef(x): refers to variable x otherwise to field x

Fig. 5. Declaration of name bindings for di�erent namespaces in C#.
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1 class C {
2 void m() { int x; }
3 }
4

5 class D {
6 void m() {
7 int x;
8 int y;
9 { int x; x = y + 1; }

10 x = y + 1;
11 }
12 }

Fig. 6. Scoped homonym method and
variable declarations in C#.

rules
Class(NonPartial(), c, _, _):

defines unique class c
scopes field, method

Class(Partial(), c, _, _):
defines non−unique class c
scopes field, method

Method(_, m, _, _):
defines unique method m
scopes variable

Block(_): scopes variable

Fig. 7. Declaration of scopes for di�erent
namespaces in C#.

Example. Figure 6 includes two de�nition sites for a method m. These de�-
nition sites are not distinguishable by their namespace method and their name
m, but, they are distinguishable by the scope they are in. The �rst de�nition
site resides in class C, the second one in class D. In C#, class declarations scope
method declarations. They introduce named scopes, because class declarations
are de�nition sites for class names. The listing also contains three de�nition sites
for a variable x. Again, these are distinguishable by their scope. In C#, method
declarations and blocks scope variable declarations. Method declarations are
named scopes, blocks are anonymous scopes. The �rst de�nition site resides in
method m in class C, the second one in method m in class D, and the last one in
a nameless block inside method m in class D. In the assignment inside the block
(line 9), x refers to the variable declaration in the same block, while the x in the
outer assignment (line 10) refers to the variable declaration outside the block. In
both assignments, y refers to the variable declaration in the outer scope, because
the block does not contain a de�nition site for y.

Model. The scopes ns clause in NBL declares a construct to be a scope
for namespace ns. Figure 7 declares scopes for �elds, methods, and variables.
Named scopes are declared at de�nition sites. Anonymous scopes are declared
similarly, but lack a defines clause.

Namespaces as Language Concepts. C# has a notion of `namespaces'. It
is important to distinguish these namespaces as a language concept from name-

spaces as a naming concept, which group names of di�erent kinds of declarations.
Speci�cally, in C#, namespace declarations are top-level scopes for class declara-
tions. Namespace declarations can be nested. Figure 8 declares a top-level name-
space N, scoping a class declaration N and an inner namespace declaration N. The
inner namespace declaration scopes another class declaration N. The de�nition
sites of the namespace name N and the class name N are distinguishable, because
they belong to di�erent namespaces (as a naming concept). The two de�nition
sites of namespace name N are distinguishable by scope. The outer namespace
declaration scopes the inner one. Also, the de�nition sites of the class name N

are distinguishable by scope. The �rst one is scoped by the outer namespace
declaration, while the second one is scoped by both namespace declarations.

Declarative Name Binding and Scope Rules SERG
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namespace N {
class N {}
namespace N { class N {} }

}

Fig. 8. Nested namespace declarations in
C#.

namespaces namespace
rules

Namespace(n, _):
defines namespace n
scopes namespace, class

Fig. 9. Declaration of name bindings for
nested namespace declarations in C#.

Model. The names of C# namespace declarations are distinguishable from
names of classes, �elds, etc. As declared in Figure 9, their names belong to the
namespace namespace. The name binding rules for de�nition sites of names of
this namespace models the scoping nature of C# namespace declarations.

Imports. An import introduces into the current scope de�nitions from another
scope, either under the same name or under a new name. An import that imports
all de�nitions can be transitive.

Example. Figure 10 shows di�erent kinds of imports in C#. First, a using

directive imports type declarations from namespace N. Second, another using
directive imports class C from namespace M into namespace O under a new name
D. Finally, classes E and F import �elds and methods from their base classes.
These imports are transitive, that is, F imports �elds and methods from E and D.

Model. Figure 11 shows name binding rules for import mechanisms in C#.
The �rst rule handles using declarations, which import all classes from the
namespace to which the quali�ed name qname resolves to. The second rule models
aliases, which either import a namespace or a class under a new name, depending
on the resolution of qname. The last rule models inheritance, where �elds and
methods are imported transitively from the base classes.

2.4 Types

So far, we discussed names, namespaces, and scopes to distinguish de�nition
sites for the same name. Types also play a role in name resolution and can be
used to distinguish de�nition sites for a name or to �nd corresponding de�nition
sites for a use site.

using N;

namespace M {
class C { int f; }

}

namespace O {
using D = M.C;
class E:D {

void m() {}
}
class F:E { }

}

Fig. 10. Various forms of imports
in C#.

rules
Using(qname):

imports class from namespace ns
where qname refers to namespace ns

Alias(alias, qname):
imports namespace ns as alias
where qname refers to namespace ns
otherwise imports class c as alias
where qname refers to class c

Base(c):
imports field (transitive),

method (transitive)
from class c

Fig. 11. Declaration of import mechanisms in
C#.
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class C {
void m() {}
void m(int x) {}
void m(bool x) {}
void m(int x, int y) {}
void m(bool x, bool y) {}

void x() {
m();
m(42);
m(true);
m(21, 21);
m(true, false);

}
}

Fig. 12. Overloaded method decla-
rations in C#.

Example. Figure 12 shows a number of
overloaded method declarations. These share
the same name m, namespace method, and
scope class C. But we can distinguish them
by the types of their parameters. Further-
more, all method calls inside method x can
be uniquely resolved to one of these meth-
ods by taking the argument types of the calls
into account.

Model. Figure 13 includes type infor-
mation into name binding rules for �elds,
methods, and variables. De�nition sites
might have types. In the simplest case, the
type is part of the declaration. In the example, this holds for parameters. For
method calls, the type of the de�nition site for a method name depends on the
types of the parameters. A type system is needed to connect the type of a sin-
gle parameter, as declared in the rule for parameters, and the type of a list of
parameters, as required in the rule for methods. We will discuss the in�uence
of a type system and the interaction between name and type analysis later. For
now, we assume that the type of a list of parameters is a list of types of these
parameters.

Type information is also needed to resolve method calls to possibly over-
loaded methods. The refers clause for method calls therefore requires the cor-
responding de�nition site to match the type of the arguments. Again, we omit
the details how this type can be determined. We also do not consider subtyp-
ing here. Method calls and corresponding method declarations need to have the
same argument and parameter types.

3 Name Binding Patterns

We now identify typical name binding patterns. These patterns are formed by
scopes, de�nition sites and their visibility, and use sites referencing these def-
inition sites. We explain each pattern �rst and give an example in C# next.
Afterwards, we show how the example can be modelled with declarative name
binding rules.

rules
Method(t, m, p∗, _):

defines unique method m of type (t∗, t)
where p∗ has type t∗

Call(m, a∗):
refers to method m of type (t∗, _)
where a∗ has type t∗

Param(t, p): defines unique variable p of type t

Fig. 13. Types in name binding rules for overloaded methods in C#.
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Unscoped De�nition Sites. In the simplest case, de�nition sites are not
scoped and globally visible.

Example. In C#, namespace and class declarations (as well as any other type
declaration) can be unscoped. They are globally visible across �le boundaries. For
example, the classes C1, C2, and C3 in Figure 2 are globally visible. In Figure 4,
only the outer namespace N is globally visible.

In contrast to C#, C++ has �le scopes and all top-level declarations are only
visible in a �le. To share global declarations, each �le has to repeat the decla-
ration and mark it as extern. This is typically achieved by importing a shared
header �le.

rules
CompilationUnit(_, _):

scopes namespace, class

(f, CompilationUnit(_, _)):
defines file f
scopes namespace, class

Fig. 14. Di�erent ways to model �le
scope for top-level syntax tree nodes.

Model. We consider any de�nition
site that is not scoped by another de�-
nition site or by an anonymous scope to
be in global scope. These de�nition sites
are visible over �le boundaries. File scope
can be modelled with a scoping rule in
two di�erent ways. Both are illustrated in
Figure 14. The �rst rule declares the top-
level node of abstract syntax trees as a scope for all namespaces which can have
top-level declarations. This scope will be anonymous, because the top-level node
cannot be a de�nition site (otherwise this de�nition site would be globally vis-
ible). The second rule declares a tuple consisting of �le name and the abstract
syntax tree as a scope. This tuple will be considered a de�nition site for the �le
name. Thus, the scope will be named after the �le.

De�nition Sites inside their Scopes. Typically, de�nition sites reside inside
the scopes where they are visible. Such de�nition sites can either be visible only
after their declaration, or everywhere in their surrounding scope.

Example. In C#, namespace members such as nested namespace declara-
tions and class declarations are visible in their surrounding scope. The same
holds for class members. In contrast, variable declarations inside a method scope
become visible only after their declaration.

Model. Scoped de�nition sites are by default visible in the complete scope.
Optionally, this can be stated explicitly in defines clauses. Figure 15 illustrates
this for namespace declarations. The second rule in this listing shows how to
model de�nition sites which become visible only after their declaration.

De�nition Sites outside their Scopes Some declarations include not only
the de�nition site for a name, but also the scope for this de�nition site. In such
declarations, the de�nition site resides outside its scope.

rules
Namespace(n, _):

defines non−unique namespace n in surrounding scope

Var(t, c):
defines unique variable of type t in subsequent scope

Fig. 15. Declaration of the visibility of de�nition sites inside scopes.
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class C {
void m(int[] x) {

foreach (int x in x)
System.Console.WriteLine(x);

}
}

Fig. 16. foreach loop with scoped iterator
variable x in C#.

Example. Let expressions are
a classical example for de�nition
sites outside their scopes. In C#,
foreach statements declare iter-
ator variables, which are visible
in embedded statement. Figure 16
shows a method with a parameter
x, followed by a foreach statement with an iterator variable of the same name.
This is considered incorrect in C#, because de�nition sites for variable names
in inner scopes collide with de�nition sites of the same name in outer scopes.
However, the use sites can still be resolved based on the scopes of the de�nition
sites. The use site for x inside the loop refers to the iterator variable, while the
x in the collection expression refers to the parameter.

Model. Figure 17 shows the name binding rule for foreach loops, stating
the scope of the variable explicitly. Note that de�nition sites which become visible
after their declaration are a special case of this pattern. Figure 18 illustrates how
this can be modelled in the same way as the foreach loop. The �rst rule assumes
a nested representation of statement sequences, while the second rule assumes a
list of statements.

using N.N.N;

namespace N’ {
class C {

C f;
void m(C p) { }

}
class D {

void m(C p) {
p.m(p.f);

}
}

}

Fig. 19. Contextual use
sites in C#.

Contextual Use Sites. De�nition sites can be ref-
erenced by use sites outside of their scopes. These use
sites appear in a context which determines the scope
into which they refer. This context can either be a di-
rect reference to this scope, or has a type which deter-
mines the scope.

Example. In C#, namespace members can be im-
ported into other namespaces. Figure 8 shows a class
N in a nested namespace. In Figure 19, this class is im-
ported. The using directive refers to the class with a
quali�ed name. The �rst part of this name refers to the
outer namespace N. It is the context of the second part,
which refers to the inner namespace N. The second part is then the context for

rules
Foreach(t, v, exp, body):

defines unique variable v of type t in body

Fig. 17. Declaration of de�nition sites outside of their scopes.

rules
Seq(Var(t, v), stmts):

defines unique variable v of type t in stmts

[Var(t, v) | stmts]:
defines unique variable v of type t in stmts

Fig. 18. Alternative declaration of de�nition sites becoming visible after their decla-
ration.

Declarative Name Binding and Scope Rules SERG
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rules
NsOrType(n1, n2):

refers to namespace n2 in ns
otherwise to class n2 in ns
where n1 refers to namespace ns

FieldAccess(e, f):
refers to field f in c
where e has type ClassType(c)

MethodCall(e, m, p∗):
refers to method m of type (t∗, _) in c
where e has type ClassType(c)
where p∗ has type t∗

Fig. 20. Declaration of contextual use sites.

the last part of the quali�ed name, which refers to the class N inside the inner
namespace.

Figure 19 also illustrates use sites in a type-based context. In method m in
class D, a �eld f is accessed. The corresponding de�nition site is outside the
scope of the method in class C. But this scope is given by the type of p, which is
the context for the �eld access. Similarly, the method call is resolved to method
m in class C because of the type of p.

Model. Figure 20 illustrates how to model contextual use sites. The scope
of the declaration site corresponding to a use site can be modelled in refers

clauses. This scope needs to be determined from the context of the use site.
The �rst rule resolves the context of a quali�ed name part to a namespace ns

and declares the use site to refer either to a namespace or to a class in ns.
The remaining rules declare use sites for �eld access and method calls. They
determine the type of the context, which needs to be a class type. A �eld access
refers to a �eld in that class. Similarly, a method call refers to a method with
the right parameter types in that class.

4 Editor Services

Fig. 21. Error checking.

Modern IDEs provide a wide range of edi-
tor services where name resolution plays a
large role. Traditionally, each of these ser-
vices would be handcrafted for each lan-
guage supported by the IDE, requiring
substantial e�ort. However, by accurately
modeling the relations between names in
NBL, it is possible to generate a name res-
olution algorithm and editor services that
are based on that algorithm.

Reference Resolving. Name resolution is exposed directly in the IDE in the
form of reference resolving: press and hold Control and hover the mouse cursor
over an identi�er to reveal a blue hyperlink that leads to its de�nition side. This
behavior is illustrated in Fig. 22.

SERG Declarative Name Binding and Scope Rules
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Fig. 22. Reference resolution of name �eld reference to name �eld de�nition.

Fig. 23. Code completion for �elds and local variables.

Constraint Checking. Modern IDEs statically check programs against a wide
range of constraints. Constraint checking is done on the �y while typing and
directly displayed in the editor via error markers on the text and in the outline
view. Error checking constraints are generated from the NBL for common name
binding errors such as unresolved references, duplicate de�nitions, use before def-
inition and unused de�nitions. Fig. 21 shows an editor with error markers. The
message parameter in the post method has a warning marker indicating that
it is not used in the method body. On the line that follows it, the posterName
variable is assigned but has not yet been declared, violating the visibility rules
of Figure 15. Other errors in the method include a subsequent duplicate de�ni-
tion of posterName, which violates the uniqueness constraint of the variable

namespace of Figure 5, and referencing a non-existent property nam.

Code Completion. With code completion, partial (or empty) identi�ers can be
completed to full identi�ers that are valid at the context where code completion
is executed. Figure 23 shows an example of code completion. In the left program
code completion is triggered on a �eld access expression on the user object. The
user object is of type User, so all �elds of User are shown as candidates. On
the right, completion is triggered on a variable reference, so all variables in the
current scope are shown.

5 Implementation

To implement name resolution based on NBL, we employ a name resolution
algorithm that relies on a symbol table data structure to persist name bindings
and lazy evaluation to resolve all references. In this section we give an overview
of the data structure, the name resolution algorithm, and their implementation.
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Persistence of Name Bindings. To persist name bindings, each de�nition and
reference is assigned a quali�ed name in the form of a URI. The URI identi�es
the occurrence across a project. Use sites share the URIs of their corresponding
de�nition sites.

A URI consists of the namespace, the path, and the name of a de�nition
site. As an example, the URI method://N/C/m is assigned to a method m in
a class C in a namespace N. Here, the segments represent the names of the
scopes. Anonymous scopes are represented by a special path segment anon(u),
where u is a unique string to distinguish di�erent anonymous scopes. For use in
analyses and transformations, URIs can be represented in the form of ATerms,
e.g. [method(),"N","C","m"] is URI for the method m.

All name bindings are persisted in an in-memory data structure called the
semantic index. It consists of a symbol table that lists all URIs that exist in a
project, and can be e�ciently implemented as a hash table. It maps each URI to
the �le and o�set of their occurrences in the project. It can also store additional
information, such as the type of a de�nition.

Resolving Names. Our algorithm is divided into three phases. First, in the
annotation phase, all de�nition and use sites are assigned a preliminary URI,
and de�nition sites are stored in the index. Second, de�nition sites are analyzed,
and their types are stored in the index. And third, any unresolved references are
resolved and stored in the index.

Annotation Phase. In the �rst phase, the AST of the input �le is traversed
in top-down order. The logical nesting hierarchy of programs follows from the
AST, and is used to assign URIs to de�nition sites. For example, as the traversal
enters the outer namespace scope n, any de�nitions inside it are assigned a URI
that starts with `n.'. As a result of the annotation phase, all de�nition and use
sites are annotated with a URI. In the case of de�nition sites, this is the de�nitive
URI that identi�es the de�nition across the project. For references, a temporary
URI is assigned that indicates its context, but the actual de�nition it points to
has to be resolved in a following phase. For reference by the following phases,
all de�nitions are also stored in the index.

De�nition Site Analysis Phase. The second phase analyzes each de�nition
site in another top-down traversal. It determines any local information about
the de�nition, such as its type, and stores it in the index so it can be referenced
elsewhere. Types and other information that cannot be determined locally are
determined and stored in the index in the last phase.

Use Site Analysis Phase. When the last phase commences, all local infor-
mation about de�nitions has been stored in the index, and non-local information
about de�nitions and uses in other �les is available. What remains is to resolve
references and to determine types that depend on non-local information (in par-
ticular, inferred types). While providing a full description of the use site analysis
phase and the implementation of all name binding constructs is outside the scope
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of this paper, the below steps sketch how each reference is resolved. See the NBL
website 1 for links to the algorithm's source �les.

1. Determine the temporary URI ns://path/n which was annotated in the
�rst analysis phase.

2. If an import exists in scope, expand the current URI for that import.
3. If the reference corresponds to a name-binding rule that depends on non-local

information such as types, retrieve that information.
4. Look for a de�nition in the index with namespace ns, path path, and name

n. If it does not exist, try again with a pre�x of path that is one segment
shorter. If the no de�nition is found this way, store an error for the reference.

5. If the de�nition is an alias, resolve it.

An important part to highlight in the algorithm is the interaction between
name and type analysis that happens for example with the FieldAccess ex-
pression of Figure 20. For name binding rules that depend on types or other
non-local information, it is possible that determining the type recursively trig-
gers name resolution. For this reason, we apply lazy evaluation, ensuring that
any reference can be resolved lazily as requested in this phase. By traversing
through the entire tree, we ensure that all use sites are eventually resolved and
persisted to the index.

6 Integration into Spoofax

The NBL, together with the index, is integrated into the Spoofax Language
Workbench. Stratego rules are generated by the NBL that use the index API to
interface with Spoofax. In this section we will show the index API and how the
API is used to integrate the editor services seen in Section 4.

Index API. Once all analysis phases have been completed, the index is �lled
with a summary of every �le. To use the summaries we provide the index API
with a number of lookups and queries. Lookups transform annotated identi�ers
into de�nitions. Queries transform de�nitions (retrieved using a lookup) into
other data. The API is used for integrating editor services, but is also exposed
to Spoofax language developers for specifying additional editor services or other
transformations.

index−lookup−one performs a lookup that looks for a de�nition of given
identi�er in its owning scope. The index−lookup lookup performs a lookup
that tries to look for a de�nition using index−lookup−one. If it cannot be
found, the lookup is restarted on the outer scope until the root scope is reached.
If no de�nition is found at the root scope, the lookup fails. There is also an
index−lookup−all variant that returns all found de�nitions instead of stopping
at the �rst found de�nition. Finally, index−lookup−all−levels is a special
version of index−lookup−all that supports partial identi�ers.

1 http://strategoxt.org/Spoofax/NBL
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editor−complete:
ast → identifiers
where

node@COMPLETION(name) := <collect−one(?COMPLETION(_))> ast ;
proposals := <index−lookup−all−levels(|name)> node ;
identifiers := <map(index−uri−name)> proposals

Fig. 25. Code completion.

To get data from the index, index−get−data is used. Given a de�nition
and a data kind, it will return all data values of that kind that is attached to
the de�nition. Uses are retrieved in the same way using index−get−uses−all.

Reference resolution. Resolving a reference to its de�nition is very straight-
forward when using index−lookup, since it does all the work for us. The only
thing that has to be done when Spoofax requests a reference lookup is a simple
transformation: node →<index−lookup> node. The resulting de�nition has lo-
cation information embedded into it which is used to navigate to the reference.
If the lookup fails, this is propagated back to Spoofax and no blue hyperlink will
appear on the node under the cursor.

constraint−error:
node → (key, "Duplicate definition")
where

<nam−unique> node ;
key := <nam−key> node ;
defs := <index−lookup−one> key ;
<gt> (<length> defs, 1)

Fig. 24. Duplicate de�nitions constraint check.

Constraint checking. Con-
straint checking rules are called
by Spoofax after analysis on ev-
ery AST node. If a constraint
rule succeeds it will return the
message and the node where the
error marker should be put on.

The duplicate de�nition con-
straint check that was shown
earlier is de�ned in Figure 24. First nam−unique (generated for unique de�-
nitions by the NBL) is used to see if the node represents a unique de�nition;
non-unique de�nition such as partial classes should not get duplicate de�nition
error markers. The identi�er is retrieved using nam−key and a lookup in the
current scope is done with index−lookup−one. If more than one de�nition is
found, the constraint check succeeds and an error marker is shown on the node.

Code completion. When code completion is requested in Spoofax, a comple-
tion node is substituted at the place where the cursor is. For example, if we
request code completion on VarRef("a"), it will be substituted by
VarRef(COMPLETION("a")) to indicate that the user wants to complete this
identi�er. See Figure 25 for the code completion implementation. We �rst re-
trieve the completion node and name using collect−one. Completion propos-
als are gathered by index−lookup−all−levels since it can handle partial
identi�ers. Finally the retrieved proposals are converted to names by mapping
index−uri−name over them.
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7 Evaluation and Discussion

Our aim with this work has been to design high-level abstractions for name res-
olution applicable to a wide range of programming languages. In this section we
discuss the limitations of our approach and evaluate its applicability to di�er-
ent languages and other language features than those covered in the preceding
sections.

Limitations. There are two areas of possible limitations of NBL. One is in the
provided abstraction, the other is in the implementation algorithm that supports
it. As for the provided abstraction, as a de�nition language, NBL is inherently
limited in the number of features it can support. While the feature space it
supports is extensive, ultimately there may always be language features or vari-
ations that are not supported. For these cases, the de�nition of NBL, written in
Stratego, can be extended, or it is possible to escape NBL and extend an NBL
speci�cation using handwritten Stratego rules. As for the implementation algo-
rithm, NBL's current implementation strategy relies on laziness, and does not
provide much control over the traversal for the computation of names or types.
In particular, sophisticated type inference schemes are not supported with the
current algorithm. To implement such schemes, the algorithm would have to
be extended, preferably in a way that maintains compatibility with the current
NBL de�nition language.

Coverage. During the design and construction of NBL, we have performed a
number of studies on languages and language features to determine the extent
of the feature space that NBL would support. In this paper we highlighted many
of the features by using C# as a running example, but other languages that we
studied include a subset of general-purpose programming languages C, Java, and
domain-speci�c languages WebDSL [10], the Hibernate Query Language (HQL),
and Mobl [12]. We also applied our approach to the Java Bytecode stack machine
language using the Jasmin [17] syntax.

For our studies we used earlier prototypes of NBL, which led to the design
as it is now. Notable features that we studied and support in NBL are partial
classes, inheritance, visibility, lexical scoping, imports, type-based name resolu-
tion, and overloading; all of which have been discussed in Sect. 4. In addition, we
studied aspect-oriented programming with intertype declarations and pointcuts,
�le-based scopes in C, and other features. Our design has also been in�uenced
by past language de�nitions, such as SDF and Stratego. Altogether, it is fair to
say that NBL supports a wide range of language features and extensive variabil-
ity, but can only support the full range of possible programming languages by
allowing language engineers to escape the abstraction. In future work, we would
like to enhance the possibilities of extending NBL and design a better interface
for escapes.
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8 Related work

We give an overview of other approaches for specifying and implementing name
resolution. The main distinguishing feature of our approach is the use of linguistic
abstractions for name bindings, thus hiding the low level details of writing name
analysis implementations.

Symbol Tables. In classic compiler construction, symbol tables are used to
associate identi�ers with information about their de�nition sites. This typically
includes type information. Symbol tables are commonly implemented using hash
tables where the identi�ers are indexed for fast lookup. Scoping of identi�ers can
be implemented in a number of ways; for example by using quali�ed identi�ers
as index, nesting symbol tables or destructively updating the table during pro-
gram analysis. The type of symbol table in�uences the lookup strategy. When
using quali�ed identi�ers the entire identi�er can be looked up e�ciently, but
considering outer scopes requires multiple lookups. Nesting symbol tables always
requires multiple lookups but is more memory e�cient. When destructively up-
dating the symbol table, lookups for visible variables are very e�cient, but the
symbol table is not available after program analysis. The index we use is a sym-
bol table that uses quali�ed identi�ers. We map quali�ed identi�ers (URIs) to
information such as de�nitions, types and uses.

Attribute Grammars. Attribute Grammars [16] (AGs) are a formal way
of declaratively specifying and evaluating attributes for productions in formal
grammars. Attribute values are associated with nodes and calculated in one or
more tree traversals, where the order of computations is determined by depen-
dencies between attributes.

Eli provides an attribute grammar speci�cation language for modular and
reusable attribute computations [13]. Abstract, language-independent compu-
tations can be reused in many languages by letting symbols from a concrete
language inherit these computations. For example, computations Range, IdDef,
and IdUse would calculate a scope, de�nitions, and references. A method de�-
nition can then inherit from Range and IdDef, because it de�nes a function and
opens a scope. A method call inherits from IdUse because it references a func-
tion. These abstract computations are re�ected by naming concepts of NBL and
the underlying generic resolution algorithm. However, NBL is less expressive,
more domain-speci�c. Where Eli can be used to specify general (and reusable)
computations on trees, NBL is restricted to name binding concepts, helping to
understand and specify name bindings more easily.

Silver [26] is an extensible attribute grammar speci�cation language which
can be extended with general-purpose and domain-speci�c features. Typical ex-
amples are auto-copying, pattern matching, collection attributes, and support for
data-�ow analysis. However, name analysis is mostly done the traditional way;
an environment with bindings is passed down the tree using inherited properties.

Reference Attribute Grammars (RAGs) extend AGs by introducing attributes
that can reference nodes. This substantially simpli�es name resolution imple-
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mentations. JastAdd [7] is a meta-compilation system for generating language
processors relying on RAGs and object orientation. It also supports parametrized
attributes to act as functions where the value depends on the given parameters.
A typical name resolution as seen in [5, 7, 2] is implemented in lookup attributes
parameterised by an identi�er of use sites, such as variable references. All nodes
that can have a variable reference as a child node, such as a method body, then
have to provide an equation for performing the lookup. These equations im-
plement scoping and ordering using Java code. JastAdd implementations have
much more low level details than NBL declarations. This provides �exibility, but
entails overhead on encoding and requires decoding for understanding. For exam-
ple, scopes for certain program elements are encoded within a set of equations,
usually implemented by early or late returns.

Visibility Predicates. CADET [20] is a notation for predicates and functions
over abstract syntax tree nodes. Similar to attribute grammar formalisms, it
allows to specify general computations in trees but lacks reusable concepts for
name binding. Poetsch-He�ter proposes dedicated name binding predicates [21],
which can be translated into e�cient name resolution functions [22]. In contrast
to NBL, scopes are expressed in terms of start and end points and multi-�le
analyses are not supported.

Dynamic Rewrite Rules. In term rewriting, an environment passing style
does not compose well with generic traversals. As an alternative, Stratego allows
rewrite rules to create dynamic rewrite rules at run-time [3]. The generated
rules can access variables available from their de�nition context. Rules generated
within a rule scope are automatically retracted at the end of that scope. Hemel
et al. [11] describe idioms for applying dynamic rules and generic traversals
for composing de�nitions of name analysis, type analysis, and transformations
without explicitly staging them into di�erent phases. Our current work builds
on the same principles, but applies an external index and provides a specialized
language for name binding declarations.

Name analysis with scoped dynamic rules is based on consistent renaming,
where all names in a program are renamed such that they are unequal to all other
names that do not correspond to the same de�nition site. Instead of changing
the names directly in the tree, annotations can be added which ensure unique-
ness. This way, the abstract syntax tree remains the same modulo annotations.
Furthermore, unscoped dynamic rewrite rules can be used for persistent map-
pings [14].

Textual Language Workbenches. Xtext [6] is a framework for developing
textual software languages. The Xtext Grammar Language is used to specify
abstract and concrete syntax, but also name bindings by using cross-references in
the grammar. Use sites are then automatically resolved by a simplistic resolution
algorithm. Scoping or visibility cannot be de�ned in the Grammar Language, but
have to be implemented in Java with help of a scoping API with some default
resolvers. For example �eld access, method calls, and block scopes would all need
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custom Java implementations. Only package imports have special support and
can be speci�ed directly in the Grammar Language. Common constraint checks
such as duplicate de�nitions, use before de�nition, and unused de�nitions also
have to be speci�ed manually. This increases the amount of boilerplate code that
has to be rewritten for every language.

In contrast to Xtext's Grammar Language, NBL de�nitions are separated
from syntax de�nitions in Spoofax. This separation allows us to specify more
advanced name binding concepts without cluttering the grammar with these
concepts. It also preserves language modularity. When syntax de�nitions are
reused in di�erent contexts, di�erent name bindings can be de�ned for these
contexts, without changing the grammar. From an infrastructure perspective,
Spoofax and Xtext work similarly, using a global index to store summaries of
�les and URIs to identify program elements.

EMFText [8] is another framework for developing textual software languages.
Like Xtext, it is based on the Eclipse Modeling Framework [23] and relies on
metamodels to capture the abstract syntax of a language. While in Xtext this
metamodel is generated from a concrete syntax de�nition, EMFText takes the
opposite approach and generates a default syntax de�nition based on the UML
Human-Usable Textual Notation [18] from the metamodel. Language designers
can then customize the syntax de�nition by adding their own grammar rules.

In the default setup, reference resolution needs to be implemented in Java.
Only simple cases are supported by default implementations [9]. JastEMF [4]
allows to specify the semantics of EMF metamodels using JastAdd RAGs by
integrating generated code from JastAdd and EMF.

References

1. Standard ECMA-334 C# language speci�cation 4th edition (2006)
2. Åkesson, J., Ekman, T., Hedin, G.: Implementation of a Modelica compiler using

JastAdd attribute grammars. Science of Computer Programming 75(1-2), 21�38
(2010)

3. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program transformation with
scoped dynamic rewrite rules. Fundamenta Informaticae 69(1-2), 123�178 (2006)

4. Bürger, C., Karol, S., Wende, C., Aÿmann, U.: Reference attribute grammars for
metamodel semantics. In: Malloy, B.A., Staab, S., van den Brand, M. (eds.) Soft-
ware Language Engineering - Third International Conference, SLE 2010. LNCS,
vol. 6563, pp. 22�41. Springer (2010)

5. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: Gabriel, R.P.,
Bacon, D.F., Lopes, C.V., Jr., G.L.S. (eds.) Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2007. pp. 1�18. ACM (2007)

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Int. conference companion on Object oriented programming
systems languages and applications companion. pp. 307�309. ACM (2010)

7. Hedin, G.: An introductory tutorial on JastAdd attribute grammars. In: Fernandes,
J.M., Laemmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational
Techniques in Software Engineering III - Int. Summer School, GTTSE 2009. LNCS,
vol. 6491, pp. 166�200. Springer (2009)

SERG Declarative Name Binding and Scope Rules

TUD-SERG-2012-015 19



20

8. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
re�nement of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) Model Driven Architecture - Foundations and Applications, 5th European
Conference, ECMDA-FA 2009. LNCS, vol. 5562, pp. 114�129. Springer (2009)

9. Heidenreich, F., Johannes, J., Reimann, J., Seifert, M., Wende, C., Werner, C.,
Wilke, C., A�mann, U.: Model-driven modernisation of java programs with jamopp.
In: Joint Proceedings of MDSM 2011 and SQM 2011. pp. 8�11. CEUR Workshop
Proceedings (March 2011)

10. Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static consistency check-
ing of web applications with WebDSL. Journal of Symbolic Computation 46(2),
150�182 (2011)

11. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. Software and Systems
Modeling 9(3), 375�402 (June 2010)

12. Hemel, Z., Visser, E.: Declaratively programming the mobile web with mobl. In:
Fisher, K., Lopes, C.V. (eds.) 2011 Int. conference on Object oriented programming
systems languages and applications, OOPSLA 2011. pp. 695�712. ACM (2011)

13. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta
Inf. 31(7), 601�627 (1994)

14. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
speci�cation of languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.)
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010. pp. 444�463. ACM (2010)

15. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax de�nition:
paradise lost and regained. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010. pp.
918�932. ACM (2010)

16. Knuth, D.E.: Semantics of context-free languages. Theory Comput. Syst. 2(2),
127�145 (1968)

17. Meyer, J., Downing, T.: Java Virtual Machine. O Reilly (1997)
18. Object Management Group: Human Usable Textual Notation Speci�cation (2004)
19. Object Management Group: Object Constraint Language, 2.3.1 edn. (2012)
20. Odersky, M.: De�ning context-dependent syntax without using contexts. Transac-

tions on Programming Languages and Systems 15(3), 535�562 (1993)
21. Poetzsch-He�ter, A.: Logic-based speci�cation of visibility rules. In: PLILP. pp.

63�74 (1991)
22. Poetzsch-He�ter, A.: Implementing high-level identi�cation speci�cations. In: Kas-

tens, U., Pfahler, P. (eds.) Compiler Construction, Compiler Construction, CC 92,
Paderborn, Germany, October 5-7, 1992, Proceedings. LNCS, vol. 641, pp. 59�65.
Springer (1992)

23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. Addison-Wesley, 2 edn. (2009)

24. Visser, E.: Syntax De�nition for Language Prototyping. Ph.D. thesis, University
of Amsterdam (September 1997)

25. Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in Stratego/XT 0.9. In: Lengauer, C., Batory, D.S., Consel, C., Odersky,
M. (eds.) Domain-Speci�c Program Generation, Int. Seminar. LNCS, vol. 3016,
pp. 216�238. Springer (2003)

26. Wyk, E.V., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute gram-
mar system. Science of Computer Programming 75(1-2), 39�54 (2010)

Declarative Name Binding and Scope Rules SERG

20 TUD-SERG-2012-015





TUD-SERG-2012-015
ISSN 1872-5392 SERG


