
FOCUS: PROGRAMMING LANGUAGES

0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 35

FOCUS: PROGRAMMING LANGUAGES

Language Design
with the Spoofax
Language
Workbench
Guido H. Wachsmuth, Gabriël D.P. Konat, and Eelco Visser,
Delft University of Technology

// State-of-the-art IDE support is essential for

programming languages to be successful. The Spoofax

language workbench is a comprehensive environment

for developing languages with this support. //

LANGUAGE WORKBENCHES pro-
vide high-level mechanisms for im-
plementing programming languages
and make the development of new
languages affordable. The Spoofax
language workbench is a platform for
developing textual programming lan-
guages. It supports exploratory lan-
guage design by allowing incremen-
tal, iterative language development
and by running generated editors in
the same Eclipse instance in which
the language is designed. Spoofax
offers a comprehensive environment
integrating syntax definition, name
binding, type analysis, program

transformation, and code generation.
For each of these aspects, it provides
highly declarative metalanguages
that abstract over the implementa-
tion of language processors, letting
language engineers focus on design.

Implementing IDEs
IDEs have become fundamental to
software engineering. Modern IDEs
such as IntelliJ IDEA, Eclipse, and Vi-
sual Studio parse files as they’re typed
and perform name and type analy-
ses. They also provide code naviga-
tion with a live view of the program
outline, references to declarations of

identifiers, content completion pro-
posals as they’re typed, and the abil-
ity to refactor programs.

Although IDE features for main-
stream programming languages are
typically implemented manually,
this often isn’t feasible for new pro-
gramming languages that must be
developed with significantly fewer
resources. Furthermore, manual
implementation inhibits the explor-
atory design of new languages. Many
IDE features concern the same lan-
guage aspect. When a language as-
pect evolves, all IDE features must
reflect this change and consistently
co-evolve. When a language’s syntax
should change, implementations must
be adopted for parsing, formatting,
and completion templates. Designers
must also ensure that the parser can
handle code emitted by the format-
ter and completion templates. When
a language’s name-binding and scope
rules should change, implementations
must be adopted for name resolution,
constraint checks, and name-based
completions. This will ensure that
completion proposals will be resolved
to the proposed definition and won’t
violate constraints.

The interactive nature of IDEs
gives rise to additional, typically
cross-cutting concerns. An IDE must
be able to provide services such as
code navigation or content comple-
tion, even in erroneous states. This
requires the parser to recover from
parse errors. Name and type analyses
must be able to work on multiple files
in a project, propagating changes in
one file to other affected files. Incre-
mental analysis techniques are nec-
essary to provide instant feedback
while the program is being edited.

Spoofax automatically derives ef-
ficient implementations for various
IDE features from declarative lan-
guage designs. It also supports the
generation of a stand-alone Eclipse

s5wac.indd 35 8/7/14 1:28 PM

36 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

plugin for a language, which can be
deployed without exposing Spoo-
fax’s language design facilities.

Modular Syntax
Defi nition in SDF3
Spoofax provides the syntax defi nition
formalism SDF3.1 The declarative,
highly modular syntax defi nitions in
SDF3 combine lexical and context-
free syntax into one formalism and
can defi ne concrete and abstract syn-
tax together in templates. SDF3 is
closed under composition, ensuring
support for language extensions and
embeddings. Spoofax derives imple-
mentations from a syntax defi nition in
SDF3 for the following IDE features:

• a parser that turns concrete
syntax into an abstract repre-
sentation and recovers from

(multiple) syntax errors,
• a formatter that turns an ab-

stract representation into con-
crete syntax,

• syntax highlighting,
• code folding,
• an outline view,
• bracket highlighting and inser-

tion, and
• syntactic code completion.

Figure 1 illustrates some of these
syntax-based IDE features for a ba-
sic expression language.

To demonstrate how Spoofax
works, we’ll develop relevant parts of
the basic expression language’s defi -
nition. Arithmetic expressions are in-
teger constants, additions, multiplica-
tions, or parenthesized expressions.
The syntax defi nition for arithmetic
expressions in SDF3 is

module Arithmetics imports Common

context-free syntax
 Exp.Int = <<INT>>
 Exp.Add = <<Exp> + <Exp>> {left}
 Exp.Mul = <<Exp> * <Exp>> {left}
 Exp = <(<Exp>)> {bracket}

context-free priorities
 Exp.Mul > Exp.Add

 A syntax defi nition in SDF3 con-
sists of zero or more template pro-
ductions. Each production takes the
form s.c = <t>, where s is the syntactic
sort being defi ned, c is the construc-
tor label used in the abstract repre-
sentation, and t is a template that
might include concrete syntax, place-
holders for other sorts, and layout.
The fi rst production defi nes a tem-
plate for integer constants, consisting
of an <Int> placeholder. The second
and third productions specify tem-
plates for addition and multiplication
consisting of an <Exp> placeholder,
whitespace, the operator symbol,
more whitespace, and another <Exp>
placeholder. The parser derived from
a template will accept layout around
placeholders and concrete syntax ele-
ments. The derived formatter will use
the whitespace from the template.

We can extend Syntax defi nitions
in SDF3 with annotations and disam-
biguation rules to express language
characteristics such as associativity
and operator precedence. In arithme-
tic expressions, addition and multi-
plication are left-associative (the left
annotation), and multiplication takes
precedence over addition (the Exp.Mul >
Exp.Add disambiguation rule).

The last template production cov-
ers parenthesized expressions. It
doesn’t specify any constructor but is
annotated with bracket. The abstract
representation of a parenthesized
expression is the same as the repre-
sentation of the inner expression.
The derived parser will consider

expressions.min

expressions.min

let x = 1
in let y = x
in y +

let
 “x”
, Int(”1”)
, Let(”y”, Var(”x:), Var(”y”))
)

let let var = exp in explet

Outline

let
let y

Syntax error, not expected here: ‘+’

expressions.pp.min

let x = 1
 in let y = x
 in y +

(a)

(b)

(c) (d)

FIGURE 1. Syntax-based IDE features for a basic expression language. (a) Syntax

highlighting, error marking, and content completion. (b) Abstract syntax representation.

(c) Formatting. (d) The outline view.

s5wac.indd 36 8/7/14 1:28 PM

SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 37

parentheses with respect to associa-
tivity and operator precedence. The
derived formatter will add parenthe-
ses where needed to preserve associa-
tivity and operator precedence.

We can defi ne a separate syntax
module for Boolean expressions:

module Booleans imports Common

context-free syntax
 Exp.True = <true>
 Exp.False = <false>
 Exp.Or = <<Exp> | <Exp>> {left}
 Exp.And = <<Exp> & <Exp>> {left}
 Exp = <(<Exp>)> {bracket}

context-free priorities
 Exp.And > Exp.Or

Both modules can be used inde-
pendently. To support arithmetic and
Boolean expressions in the same lan-
guage, we can import both into an-
other module:

module Expressions

imports Arithmetics Booleans

context-free priorities
 Exp.Add > Exp.And

We need to add another disam-
biguation rule to specify the prece-
dence between operators from both
modules. This rule takes the im-
ported precedence rules into account
and is equivalent to Exp.Mul > Exp.Add >
Exp.And > Exp.Or.

Iterative
Language Design
Rather than designing a completely
new programming language before its
implementation, it’s good to incremen-
tally introduce features and abstrac-
tions through iterative design. This
means that programs and the pro-
gramming language evolve together.
Spoofax enables quick turnaround

for iterative language design by
running generated editors for a
language in the same Eclipse in-
stance in which the language is
designed.

Additionally, the Spoofax
testing language provides a re-
usable, generic basis for de-
claratively specifying language
design tests.2 This lets us sys-
tematically test language fea-
tures. Figure 2 specifi es test
cases for parsing let expressions.
The expression let x = i in body
consists of a variable x, an ini-
tialization expression i, and an
expression body, in which x will
be bound to the value of i.

With the current syntax defi -
nition, all positive test cases
(parse succeeds) fail. Only negative
test cases (parse fails) succeed. We
can start fi xing the syntax defi -
nition by adding a new template
production:

Exp.Let = <let x = 1 in 2>

Now, the fi rst test case succeeds.
The second test case indicates we
must abstract over different variable
names:

Exp.Let = <let <ID> = 1 in 2>

This causes the second test case to
succeed but both negative test cases
to fail. We can fi x this by adding lex-
ical syntax rules that reject reserved
keywords:

lexical syntax
 ID = “let” {reject}
 ID = “in” {reject}

Now, the negative test cases suc-
ceed again. The third test case indi-
cates we must abstract over subex-
pressions in the let expression:

Exp.Let = <let <ID> = <Exp> in <Exp>>

This leaves us with two failing
test cases that use variable refer-
ences in expressions. We can add an-
other template production for such
expressions:

Exp.Var = <<ID>>

Now, all test cases succeed. How-
ever, when we use the generated
editor and apply the formatter on
a nested let expression, the expres-
sion will print on a single line. We
can improve the formatter by adding
line breaks and indentations to the
template:

templates
 Exp.Let = <
 let
 <ID> = <Exp>
 in
 <Exp>>
 Exp.Var = <<ID>>

lexical syntax
 ID = “let” {reject}
 ID = “in” {reject}

module syntax/let
language Expressions

test simple let x
 [[let x = 1 in 2]] parse succeeds
test simple let y
 [[let y = 1 in 2]] parse succeeds
test let w/ subexpressions
 [[let x = 1 + 2 in 3 + 4]] parse succeeds
test let w/ variable use
 [[let x = 1 + 2 in x]] parse succeeds
test nested let
 [[let x = 1 in
 let y = x in y]] parse succeeds
test let reserved
 [[let let = 1 in 2]] parse fails
test in reserved
 [[let in = 1 in 2]] parse fails

FIGURE 2. Test-driven language design in

Spoofax. The module de� nes test cases for the

syntax of let expressions in the Spoofax testing

language.

s5wac.indd 37 8/7/14 1:28 PM

38 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

Declarative Name
Binding and Scope
Rules in NaBL
Spoofax provides the name-binding
language NaBL (pronounced enable) to
declaratively specify name binding and
scope rules of a language.3 From NaBL
rules, Spoofax derives implementations
for the following IDE features:

• multifi le name analysis that in-
crementally uses previous analy-
sis results,4

• constraint checks for duplicate
and hiding defi nitions,

• reference resolution, and
• name-based content completion.

NaBL provides four basic con-
cepts. Namespaces distinguish dif-
ferent kinds of names so that an oc-
currence of a name in one namespace
isn’t related to an occurrence of the

module bindings/let
language Expressions

test single let
 [[let [[x]] = 1 in [[x]]]]
 resolve #2 to #1
test nested let init
 [[let [[x]] = 1 in
 let y = [[x]] in y]]
 resolve #2 to #1
test nested let body
 [[let [[x]] = 1 in
 let y = 2 in [[x]]]]
 resolve #2 to #1
test hiding let init
 [[let [[x]] = 1 in
 let x = [[x]] in x]]
 resolve #2 to #1
test warn on hiding let
 [[let x = 1 in
 let [[x]] = 2 in x]] 1 warning

FIGURE 3. Test-driven language

design in Spoofax. The module de� nes

test cases for reference resolution and

hiding constraints in let expressions in the

Spoofax testing language.

same name in another namespace.
Defi nitions bind names. References
use names (name binding connects
references to defi nitions). Scopes re-
strict defi nitions’ visibility.

Defi nitions, references, and scopes
are defi ned in binding rules. A bind-
ing rule takes the form pattern: clause,
where pattern is a term pattern and
clause is a name-binding declaration
about the language construct that
matches pattern. Spoofax uses terms
for the abstract representation of
language constructs. A pattern is a
term with variables. A term matches
a pattern if its variables can be bound
to subterms in the actual term. The
name-binding rules for let expres-
sions are

module names imports Expressions
namespaces Variable
binding rules
 Let(x, i, body): de� nes Variable x
 Var(x): refers to Variable x

There is only a single namespace
Variable for variables. The fi rst bind-
ing rule handles variable defi nitions.
Its pattern matches terms represent-
ing a let expression and binds x to
the name of the declared variable, i
to the initialization expression, and
body to the expression in the body.
The de� nes clause specifi es that
terms matching the rule’s pattern
defi ne the name x in Variable. The sec-
ond binding rule handles variable
references; it matches terms repre-
senting those references and binds
x to the referred variable’s name.
The refers to clause specifi es that
terms matching the rule’s pattern re-
fer to a defi nition of x in the Variable
namespace.

Figure 3 shows fi ve test cases for
name binding. The fi rst four mark
different occurrences of names with
[[…]] and specify which occurrence
should resolve to which other occur-
rence. The fi fth test case specifi es an

expected warning on an inner let ex-
pression, which hides a variable de-
clared in an outer let expression.

These test cases indicate a mis-
take in the binding rules we’ve speci-
fi ed so far. Currently, variable defi ni-
tions aren’t scoped. They’re visible in
all expressions, even if they’re in dif-
ferent fi les. We can correct the cor-
responding binding rule and restrict
a variable’s scope to the body of the
declaring let expression:

Let(x, i, body): de� nes Variable x in body

Spoofax in Practice
Spoofax is used to develop program-
ming languages in education, re-
search, and industry. We use Spoo-
fax in two MSc courses at the Delft
University of Technology. In the
compiler construction course, stu-
dents build a compiler for a Java sub-
set with Spoofax. In the language
engineering project course, students
use Spoofax to design domain-spe-
cifi c languages (DSLs).

Mobl is a DSL for mobile Web
applications. It integrates languages
for user interface design, styling,
data modeling, querying, and ap-
plication logic into a single, unifi ed
language that’s fl exible and expres-
sive and that enables early error
detection.6

WebDSL is the largest, most com-
plex DSL designed with Spoofax to
date (see Figure 4a). A DSL for Web
information systems, WebDSL main-
tains separation of concerns while
integrating its sublanguages, en-
abling consistency checking and re-
using common language concepts.5

SugarJ is an extensible program-
ming language on top of Java and
the Spoofax metalanguages SDF and
Stratego. (Stratego unifi es program
transformation and code genera-
tion.7) It supports syntactic extensi-
bility of the host language in the
form of language libraries.8

s5wac.indd 38 8/7/14 1:28 PM

SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 39

//---
// Computation of estimated betweenness centrality
//---
Procedure comp_BC(G: Graph, BC: N_P<Float>, Seeds: Node_Sequence)
{
 G.BC = Ø; // Initialize

 For (s: Seeds.Items) {

 // temporary values per Node
 Node_Property<Float> sigma;
 Node_Property<Float> delta;
 G.sigma = Ø;
 s.sigma = 1;

 // BFS order iteration from s
 InBFS(v: G,Nodes From s) {
 // Summing over BFS parents
 v.sigma = Sum(w:v,UpNbrs) { w.sigma };
 }
 InReverse { = // Reverse–BFS order iteration to s
 V.delta = // Summing over BFS children
 Sum (w:v.DownNbrs) {
 v.sigma / w.sigma * (1+ w.delta) };

 V.BC += v.delta @ s; // accumulate BC

 }
 }
}

bc.gm Outline

comp_BC

BC : Float
sigma : Float
delta : Float

G

(b)

(a)

Outline

data model
 User
 Post
templates
 main
 top
pages
 post
 editPost
 root

entity User {
 username :: String (id)
 password :: Secret
 posts -> Set<Post>
}

entity Post {
 title :: String
 updated :: DateTime
 author -> User (inverse=User.post)
 text :: WikiText
}

section templates

section pages

define page post(p : Post) {
 main {
 header { output(p.titl)}
 par { output(p.text) }
 navigate editPos(p) {”[Edit]”}
 }
}

FIGURE 4. Eclipse IDEs for (a) WebDSL and (b) Green-Marl. Both DSLs are developed in Spoofax. Spoofax automatically derives

ef� cient implementations for IDE features.

s5wac.indd 39 8/7/14 1:28 PM

40 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

static void gm_expand_argument_list(std::list<ast_argdecl*>& A) {
 std::list<ast_argdecl*> s; // temp;
 std::list<ast_argdecl*>::iterator I;

 // expand x,y : INT -> x:INT, y:INT
 for (I = A.begin(); I != A.end(); I++) {
 ast_argdecl *a = *I;
 ast_idlist* idl = a->get_idlist();
 ast_typedecl* t = a->get_type();
 if (idl->get_length() == 1) {
 s.push_back(a);
 } else {
 for (int i = 0; i < idl->get_length(); i++) {
 ast_id* I = idl->get_item(i)->copy();
 ast_idlist* IDL = new ast_idlist();
 IDL->add_id(I);
 ast_typedecl* T = t->copy();

 ast_argdecl *aa = ast_argdecl::new_argdecl(IDL, T);
 s.push_back(aa);
 }

 delete a;
 }
 }

 // new clear A, and put contents of S into A
 A.clear();
 for (I = s.begin(); I != s.end(); I++) {
 A.push_back(*I);
 }
}

(a)

strategies

 normalize-all = innermost(normalize)

rules

 normalize:
 [ArgDecl([n1, n2 | n*], ty) | arg*] ->
 [ArgDecl([n1], ty), ArgDecl([n2 | n*], ty) | arg*]

(b)

FIGURE 5. A normalization step in the

Green-Marl compiler, splitting argument

declarations into separate declarations.

(a) The manual implementation in C++.

(b) The declarative speci� cation in

Spoofax.

Developed by Stanford Univer-
sity’s Pervasive Parallelism Labo-
ratory, Green-Marl is a DSL for
effi cient graph data analysis.9 Its
original compiler is implemented as a
command-line tool in C++. In 2012,
we collaborated with Oracle Labs to
evaluate the Spoofax workbench’s

applicability to DSLs under develop-
ment at Oracle. As part of this col-
laboration, we redesigned Green-
Marl with Spoofax and developed a
Green-Marl plugin for Eclipse (see
Figure 4b).

Although the Spoofax version
provides additional IDE features, it’s

signifi cantly smaller than the hand-
written command-line compiler. The
syntax defi nition in SDF3 is only
half the size of the YACC-based syn-
tax defi nition from the hand-written
compiler. The specifi cation of Green-
Marl’s type system in NaBL and TS
(Spoofax’s metalanguage for type
specifi cation) is an order of magni-
tude smaller than the manually im-
plemented static analysis in C++.

Because of the Spoofax version’s
declarative nature, it improves ex-
tensibility and maintainability. For
example, declarative name-binding
and typing rules reveal cases that
the manual implementation doesn’t
cover. Figure 5 provides another ex-
ample, showing the implementation
of a normalization step in C++ and
the specifi cation of the same normal-
ization step in Spoofax. We can eas-
ily extend the latter by adding new
normalize rules.

Implementation
Spoofax is based on several lan-
guage-parametric runtime systems.
Spoofax maps declarative language
designs to parameters for these
runtime systems. We bootstrap
Spoofax’s metalanguages to de-
rive Spoofax-based IDEs for these
languages.

Parsing and Error Recovery
From a syntax defi nition in SDF3,
we derive a permissive grammar that
also accepts programs with minor
errors by adding recovery produc-
tions.10 We generate a parse table
from the permissive grammar. This
parse table is interpreted by a Java

s5wac.indd 40 8/7/14 1:28 PM

 SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 41

workbench, providing IDE sup-
port for languages built with Spoo-
fax. The metalanguage editors for
SDF2, Stratego, and Spoofax’s edi-
tor description language12 were fully
bootstrapped. Their syntax was de-

fined in SDF2, their analyses and
code generations were implemented
in Stratego, and their editor services
were specified in the editor descrip-
tion language.

With the emergence of meta-
languages such as SDF3, NaBL, and
TS, we started a new bootstrapping
cycle. SDF3, NaBL, and TS are al-
ready completely bootstrapped. We
recently started migrating the syntax
definition of Stratego to SDF3 and
to express name and type analysis in
NaBL and TS, leaving Stratego only
for transformations such as normal-
ization and code generation.

Availability
Spoofax is developed at the Delft
University of Technology’s Soft-
ware Language Design and En-
gineering Lab. All lab results are
available for application, reproduc-
tion, and further research through
open source software distribu-
tions. We continuously build Spoo-
fax releases, which are available
at Eclipse update sites for stable,
unstable, and nightly releases. We
emphasize development of research
software to the extent that it’s us-
able in production systems. Fur-
thermore, the SugarJ team and Ora-
cle Labs contribute to Spoofax.

Oracle Labs also funds research
and development for Spoofax. The

at the file level by the collec-
tion phase and at the task level by
the evaluation phase. When a file
changes, only this file is recollected,
and only the tasks affected by the
changes in the collected data are re-

evaluated. Consequently, the analy-
sis neither reparses nor retraverses
unchanged files, even if they’re af-
fected by changes in other files.

Origin Tracking
For several IDE features, such as
syntax highlighting, outline views,
and content completion, we gener-
ate declarative default specifications.
These can be customized with ad-
ditional, user-defined specifications.
We combine default and user-defined
specifications into a single specifica-
tion, which the Spoofax runtime sys-
tem interprets.

Many of these features also rely
on generic or generated Stratego
rules, including outline views, con-
straint checks, reference resolution,
and name-based content completion.
To support source code navigation
and precise error marking, the Spoo-
fax runtime system keeps track of
original source positions. Both inter-
preted and compiled Stratego rules
implicitly pass along position in-
formation to maintain relations be-
tween the original source positions
and rewrite results.

Bootstrapping
The Spoofax project started with
the development of Eclipse edi-
tors dedicated to SDF2 and Strat-
ego. It later evolved to a language

implementation of a scannerless
generalized LR parsing algorithm,11
which we extend with a selective
form of backtracking that’s used
only for error recovery. We ignore all
recovery productions during normal
parsing; we employ backtracking to
apply the recovery rules only when
an error is detected.10

Formatting
Spoofax provides Stratego to specify
program transformation and code
generation; we also use it as an im-
plementation language for IDE fea-
tures. To derive an implementation
of a formatter, we translate each
template production from a syntax
definition in SDF3 to a Stratego re-
write rule. These rules match ab-
stract representations and produce
concrete representations by com-
bining concrete syntax fragments,
whitespace, and formatted sub-
elements. The rewrite rules are de-
sugared into core constructs, which
can be interpreted by the Stratego in-
terpreter or compiled into Java.

Incremental Name and Type Analysis
Name and type analysis involves two
phases. The collection phase analyzes
lexical scopes, collects information
about binding instances, and creates
deferred analysis tasks in a top-down
traversal.1 We derive this traversal
by generating Stratego rewrite rules
from declarative name-binding and
scope rules in NaBL and typing rules
in TS. The resulting Stratego rules
are either desugared and interpreted,
or compiled into Java.

Each analysis task captures a name
resolution or type analysis step. Tasks
might depend on other tasks and are
evaluated by an incremental task en-
gine in the evaluation phase.4 The
task engine is implemented in Java
and Stratego and is integrated into
the Spoofax runtime environment.

Incremental analysis is supported

Spoofax is used to develop
programming languages in education,

research, and industry.

s5wac.indd 41 8/7/14 1:28 PM

42 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: PROGRAMMING LANGUAGES

Netherlands Organization for Scien-
tific Research awarded Eelco Visser
a €1.5-million Vici grant to develop
methods and techniques for auto-
matically verifying language defini-
tions. These techniques will be in-
tegrated in Spoofax and should let
language developers easily detect se-
mantic errors early.

Comparison
Spoofax is a language workbench
for developing textual programming
languages. We compare Spoofax to
other notable tools for creating and
using textual languages.

Parser Generators
Parser generators typically support
particular parsing algorithms, which
work for only a subclass of the set of
all context-free grammars, such as
LL(1), LR(1), and LALR(1). Gram-
mar class restrictions can seem ar-
bitrary to prospective users. From
an implementation viewpoint, the
restrictions make sense for the algo-
rithms used for these parsers. How-
ever, from a usability viewpoint, the
restrictions reveal a leaky abstrac-
tion. The implementation directs
and restricts how a grammar can
be written, forcing language engi-
neers to focus on a parser imple-
mentation’s complex inner work-
ings. Instead of focusing on language
design, engineers must deal with
parsing algorithms’ idiosyncrasies.
Factorizing and massaging syntax
definitions lead to specifications that
don’t correspond with the high-level
declarative description of the lan-
guage’s natural grammar.13

Language Workbenches
Many language workbenches pro-
vide high-level mechanisms for
implementing programming lan-
guages.14 We compare Spoofax to
the textual language workbenches
Xtext15 and Rascal16 and to the

projectional language workbench
MPS (Meta Programming System).17

Xtext is a mature open source
framework for developing program-
ming languages and DSLs. It lets de-
velopers reuse established and com-
monly understood default semantics
for many language aspects. It relies on
the ANTLR (Another Tool for Lan-
guage Recognition) parser generator
and inherits its grammar class restric-
tion, requiring language engineers to
factorize and massage their syntax
definitions and preventing them from
freely composing syntax definitions.
Name bindings are specified as cross-
references in the grammar. A simple
resolution algorithm then automati-
cally resolves references. Scoping or
visibility can’t be defined in the gram-
mar but must be implemented in Java
with the help of a scoping API with
default resolvers. Common constraint
checks such as duplicate definitions,
use-before definitions, and unused
definitions must also be specified
manually. This increases the manual
implementation effort.

Rascal is an extensible metapro-
gramming language and IDE for
source code analysis and transfor-
mation. Rascal employs GLL (gen-
eralized LL) parsing, which supports
debugging of syntax definitions.
Spoofax derives efficient implemen-
tations from declarative specifica-
tions in different metalanguages. In
contrast, Rascal provides a single
metalanguage to support program-
matic encodings of name and type
analyses and custom IDE features
for programming languages.

MPS is an open source language
workbench developed by JetBrains.
It provides projectional editors with
which users edit a projection of the
abstract representation in a standard,
fixed layout. This allows for integrated
textual, symbolic, and tabular nota-
tion. Owing to MPS’s projectional
nature, parsing and name binding

are no longer needed, and it provides
wide-ranging support for composing
and extending languages and editors.
Similar to Spoofax, MPS provides de-
clarative metalanguages for testing
language definitions and typing rules.

P rogramming language de-
signers want to get usable,
reliable realizations of their

language design ideas into the hands
of programmers as efficiently as pos-
sible. To achieve this goal, they need
to produce several artifacts:

• a compiler or interpreter that
allows programmers to execute
programs in the language,

• an IDE that supports program-
mers in constructing programs
in the language,

• a high-level specification of the
language that documents its in-
tent for programmers, and

• validation, via automated test-
ing or formal verification,
that the language designs and
implementations are correct and
consistent.

Existing tools generally require
the designer to create each of these
artifacts separately, even though they
reflect the same underlying design.
Consequently, a compiler or inter-
preter is often the only artifact pro-
duced; documentation, IDE, and—
especially—validation are typically
omitted. For example, language im-
plementations rarely formally guar-
antee semantic correctness properties
such as type soundness and behavior
preservation of transformations, be-
cause current implementation tools
don’t provide support for verifica-
tion. This can lead to subtle errors in
languages that are discovered late.

Our vision is a language design-
er’s workbench as a one-stop shop
for language design implementation

s5wac.indd 42 8/7/14 1:28 PM

SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 43

 15. M. Eysholdt and H. Behrens, “Xtext:
Implement Your Language Faster Than
the Quick and Dirty Way,” Proc. Conf.
Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA
10), 2010, pp. 307–309.

 16. P. Klint, T. van der Storm, and J. Vinju,
“EASY Meta-programming with Ras-
cal,” Generative and Transformational
Techniques in Software Engineering III,
J.M. Fernandes et al., eds., LNCS 6491,
Springer, 2011, pp. 222–289.

 17. M. Völter and V. Pech, “Language
Modularity with the MPS Language Work-
bench,” Proc. 34th Int’l Conf. Software
Eng. (ICSE 12), 2012, pp. 1449–1450.

 18. E. Visser, et al., “A Language Designer’s
Workbench: A One-Stop Shop for Imple-
mentation and Verifi cation of Language
Designs,” to be published in Proc. Symp.
New Ideas in Programming and Refl ec-
tions on Software (Onward! 14), 2014.

Language Environments,” ACM Trans.
Programming Languages and Systems, vol.
34, no. 4, 2012, article 15.

 11. E. Visser, Scannerless Generalized-LR
Parsing, tech. report P9707, Programming
Research Group, Univ. Amsterdam, 1997.

 12. L.C.L. Kats and E. Visser, “The Spoofax
Language Workbench: Rules for Declara-
tive Specifi cation of Languages and IDEs,”
Proc. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applica-
tions (OOPSLA 10), 2010, pp. 444–463.

 13. L.C.L. Kats, E. Visser, and G. Wachsmuth,
“Pure and Declarative Syntax Defi nition:
Paradise Lost and Regained,” Proc. Conf.
Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA
10), 2010, pp. 918–932.

 14. S. Erdweg et al., “The State of the Art in
Language Workbenches,” Software Lan-
guage Engineering, M. Erwig et al., eds.,
LNCS 8225, Springer, 2013, pp. 197–217.

and validation.18 The key to realiz-
ing this vision is to conceptualize
the subdomains of language defi -
nition as a collection of declara-
tive, multipurpose metalanguages,
so that a single language defi ni-
tion can be used as the source for
the implementation of effi cient and
scalable compilers and IDEs, the
verifi cation or testing of correct-
ness properties, and as a source of
technical documentation for users
of the language.

References
 1. T. Vollebregt, L.C.L. Kats, and E. Visser,

“Declarative Specifi cation of Template-
Based Textual Editors,” Proc. 2012 Work-
shop Language Descriptions, Tools, and
Applications (LDTA 12), 2012, article 8.

 2. L.C.L. Kats, R. Vermaas, and E. Visser,
“Testing Domain-Specifi c Languages,”
Proc. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applica-
tions (OOPSLA 11), 2011, pp. 25–26.

 3. G.D.P. Konat et al., “Declarative Name
Binding and Scope Rules,” Software Lan-
guage Engineering, LNCS 7745, Springer,
2012, pp. 311–331.

 4. G. Wachsmuth et al., “A Language
Independent Task Engine for Incremental
Name and Type Analysis,” Software Lan-
guage Engineering, M. Erwig et al., eds.,
LNCS 8225, Springer, 2013, pp. 260–280.

 5. D.M. Groenewegen et al., “WebDSL: A
Domain-Specifi c Language for Dynamic
Web Applications,” Proc. Conf. Object-
Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 08),
2008, pp. 779–780.

 6. Z. Hemel and E. Visser, “Declaratively
Programming the Mobile Web with Mobl,”
Proc. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applica-
tions (OOPSLA 11), 2011, pp. 695–712.

 7. M. Bravenboer et al., “Stratego/XT 0.17.
A Language and Toolset for Program
Transformation,” Science of Computer
Programming, vol. 72, nos. 1–2, 2008, pp.
52–70.

 8. S. Erdweg et al., “Library-Based
Model-Driven Software Development with
SugarJ,” Proc. Conf. Object-Oriented
Programming, Systems, Languages, and
Applications (OOPSLA 11), 2011, pp.
17–18.

 9. S. Hong et al., “Green-Marl: A DSL for
Easy and Effi cient Graph Analysis,” Proc.
Conf. Architectural Support for Program-
ming Languages and Operating Systems
(ASPLOS 12), 2012, pp. 349–362.

 10. M. de Jonge et al., “Natural and Flexible
Error Recovery for Generated Modular

GUIDO H. WACHSMUTH is an assistant professor in the
Software Language Design and Engineering program at the
Delft University of Technology. He designs and implements
declarative metalanguages for Spoofax. His research focuses
on new linguistic abstractions in metalanguages, which enable
declarative defi nitions of software languages and form a single
basis for effi ciently executing various language-processing
tasks. Wachsmuth received a PhD in computer science from
Humboldt Universität zu Berlin. He’s a member of the ACM
Special Interest Group on Programming Languages. Contact him
at guwac@acm.org.

GABRIËL D.P. KONAT is a PhD student in the Software Lan-
guage Design and Engineering program at the Delft University
of Technology. His research interests include software language
engineering, domain-specifi c languages, and declarative
metalanguages and their effi cient implementation. He cur-
rently works on incremental name and type analyses, which
can be automatically derived from declarative specifi cations
in Spoofax. Konat received an MSc in computer science from
the Delft University of Technology. He’s a member of the ACM
Special Interest Group on Programming Languages. Contact him
at gkonat@acm.org.

EELCO VISSER is an Antoni van Leeuwenhoek Professor of
computer science at the Delft University of Technology, where
he leads the Software Language Design and Engineering
program. That program develops Spoofax and many domain-
specifi c languages (DSLs), including DSLs for syntax defi nition,
program transformation, Web application development, and
mobile phone applications. Visser received a PhD in computer
science from the University of Amsterdam. He’s a member
of IEEE and the ACM Special Interest Group on Programming
Languages. Contact him at visser@acm.org.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

s5wac.indd 43 8/7/14 1:28 PM

