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Introduction Build systems check, compile, test, and de-
ploy virtually every software project. Besides increasing
software reliability, incremental build systems also speed up
software development by enabling short feedback cycles. Af-
ter changing a source file or configuration flag, only a subset
of the build tasks needs to be re-executed to bring the project
into a consistent state again. For build tasks that were not
affected by a change, the previous result is reused. However,
the reliable and long-term maintainable usage of incremental
build systems require the following three properties:

Precision Incremental builds must yield the same result as
a clean build (correctness), while re-executing the least
number of tasks possible (minimality). Therefore, build
systems must track precise dependency information for
each build task : which files did it read from or write to,
and which other tasks did it require?

Efficiency Rebuilds must be efficient. That is, rebuild times
must be proportional to the impact of the change. Even for
large software projects which require a lot of dependency
tracking, a small change that only affects a few build tasks
should incur a short rebuild time.

Expressiveness Like all software artifacts, build scripts
grow during a project’s lifetime [7], and require increasing
maintenance [6]. Therefore, build scripts must be written
in expressive languages that minimise accidental complex-
ity. Build script languages should not require complicated
design pattern for expressing common scenarios.

Current incremental build systems focus on efficiency and
precision, but lack expressiveness. To support efficient in-
cremental rebuilds, current build systems impose a strict
separation of the configuration and build stages. That is,
all build tasks and dependencies (i.e., the variability of the
build) are declared in the configuration stage to create a
build plan, which is then executed in the build stage. This
model contradicts reality, where how to build an artifact
depends on the execution of other build tasks.
Common workarounds required in this model are over-

approximation (*.h in Make to depend on all C header files),
under-approximation (own.h to depend only on your own
header file), or additional staging (e.g., Makefile generation
and recursive Make [8]). However, these workarounds are
not precise: over-approximation is not minimal and under-
approximation is unsound. Furthermore, additional staging
is not expressive nor maintainable, as it introduces accidental

taskdef main() -> string {
val config = parseYaml(./config.yaml);
if(config.checkStyle && !checkStyle(config.srcDir))

return "style error";
val genTests = genTests(config.srcDir, ./test-gen);
var failed = 0;
for(test <- ./test/** ++ genTests)

if(!runTest(test)) failed += 1;
return "Failed tests: " + failed;

}
taskdef parseYaml(file: path) -> Config { ...

requires file; ... }
taskdef checkStyle(src: path) -> bool { ... }
taskdef genTests(src: path, dst: path) -> path* { ...

provides $dst/$src; ... }
taskdef runTest(test: path) -> bool { ... }

Listing 1: PIE build script that optionally checks code style,
generates tests, and runs tests, based on a configuration file.

complexity into build scripts. To solve this problem, we need
to eliminate staging and instead provide build engineers with
an expressive programming language for writing build scripts,
and support precise dependency tracking through dynamic
dependencies.

PIE To this end, we have developed PIE [5, 4], a DSL
(domain-specific language) and runtime for precise, efficient,
and expressive build programming, building forth on the
Pluto [2] incremental build system.

The PIE DSL [5] is a programming language with several
domain-specific concepts. Listing 1 shows an example of a
build script that checks code style and runs tests. Build
tasks (taskdef) are procedures that can invoke other tasks in
their body and inspect their results. For example, main calls
parseYaml(./config.yaml), and stores its result in variable
config. This result is then used to do conditional build-
ing : only if config.checkStyle is true do we require task
checkStyle. In the for loop, we do iterative building : in-
voking the runTest task multiple times with different input
tests. Finally, we can indicate whether we read or write to
files with requires and provides.

The PIE runtime incrementally executes these build scripts
based on Pluto’s top-down incremental build algorithm [2].
The user requires a task (task definition + input arguments)
to bring it into a consistent state and to get its result. When a
task has not been executed before, PIE executes its procedure
body. Otherwise, PIE only executes a task when it is deemed
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Figure 1: The initial dependency graph after executing the
build script from listing 1, capturing task and file dependen-
cies as the basis for incremental building.

inconsistent after recursively checking its dependencies, and
only executes a task once each round. A task is inconsistent
when any of its file dependencies have changed, or when a
task it calls is inconsistent. Otherwise, the task is consistent
and we can return its result from the cache. The initial
dependency graph that PIE creates is shown in fig. 1, with
incremental execution after a change shown in fig. 2.
A problem with the top-down build algorithm is that it

needs to check the entire dependency graph to determine
what has changed, which does not scale up to large depen-
dency graphs while scaling down to many low-impact changes.
To resolve this problem, we have developed a change-driven
incremental build algorithm [4] that, when given a list of file
changes, starts building from the bottom-up, only checking
files and tasks that have been affected by a change, drastically
speeding up rebuilds for low-impact changes.
A residual problem is that tasks which are no longer re-

quired (i.e., have no incoming task dependencies) stay in the
dependency graph, and consequently keep being executed
by the change-driven algorithm. To mitigate this problem,
we have introduced the notion of observability [10]. A task
is observable if it is directly or indirectly depended on by
an explicitly observable task (i.e., a root task that the user
deems observable). Otherwise, a task is unobserved and does
not have to be checked or executed, and can even be removed
from the dependency graph in a garbage collection pass.

Case Studies We have applied PIE to the interactive lan-
guage development and build pipeline of the Spoofax Lan-
guage Workbench [3], improving incrementality by removing
under/over-approximation through precise dynamic depen-
dencies, and improving maintainability by having only a
single build script without staging instead of four separate
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Figure 2: Dependency graph after incremental execution
with a change that adds a source file. Affected tasks were
executed. Notably, main executes a new runTest because
genTests generated a new test file for ./src/C.

ones [5]. We have also applied PIE to an incremental perfor-
mance testing script, leading to similar benefits. Finally, PIE
is being used to incrementalize the compiler of Stratego [11,
1], a term transformation meta-DSL with open extensibility.

Implementation The PIE DSL is implemented in Spoofax,
and the runtime as a Java library. Both can be found online 1.

Future Work PIE currently does not support parallelism
nor concurrency, as it is unclear whether a task can be
parallelised or concurrently executed because of dynamic
dependencies. For example, the runTest tasks seem to be
parallelizable from glancing at fig. 1, but this dependency
graph is only available after execution. A runTest tasks
could start requiring other runTest tasks which are already
concurrently executing, or other files which are being written
to, causing concurrency bugs.

We have not yet investigated distributed builds, where build
results can be cached (by uploading them, or having a server
execute the build) and retrieved remotely [9]. However, since
PIE has exact dependency information and uses constructive
traces, it should be possible to upload/download task results.
Finally, partial evaluation of PIE build scripts could be used
to automate deployment of binaries by marking required
source files of tasks as static.

Conclusion PIE is precise, as dependencies of build tasks
are exactly tracked using dynamic dependencies, enabling
correct and minimal incremental builds. PIE is efficient, only
checking and executing tasks that have been affected by a
change. Finally, PIE is expressive, as build engineers write
their build scripts in a full-fledged programming language,
without having to resort to workarounds or complicated
design patterns.

1https://github.com/metaborg/pie
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